mme.modares.ac.ir
:
Please cite this article using:
A. Abdollahi, M. R. Salimpour, N. Etesami, Experimental analysis of pool boiling heat transfer of ferrofluid on surfaces deposited with nanofluid, Modares Mechanical 1
*2
3
- 1
- 2
-3
* 8415683111
: 16 1394
: 24 1394
: 05 1394
.
) – ( .
. . .
0.1
. 43 . .
. .
Experimental analysis of pool boiling heat transfer of ferrofluid on surfaces deposited with nanofluid
Ali Abdollahi
1, Mohammad Reza Salimpour
1*, Nasrin Etesami
21- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran 2- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran
* P.O.B. 841568311, Isfahan, Iran, [email protected]
A RTICLE I NFORMATION A BSTRACT
Original Research Paper Received 07 November 2015 Accepted 15 December 2015 Available Online 25 January 2016
Boiling heat transfer is one of the most applicable heat transfer processes within the industry. In this paper, the pool boiling heat transfer of Fe3O4 /water nanofluid (ferrofluid) in atmospheric pressure has been analyzed experimentally. The nanofluid in this study has been synthesized in a single step and retains high stability. The replication and accuracy of the testing machine has been studied for deionized water three times, indicating an appropriate concordance with the literature. Considering different volume concentrations of the nanofluid has revealed that boiling heat transfer in high concentrations decreases with an increase of concentration, while it rises with the increase of concentration in low concentrations. Hence, boiling heat transfer coefficient in 0.1% volume concentration nanofluid has been measured to be the optimum value which increases up to 43%. The roughness of boiling surface was varied with the deposition of nanoparticles in various conditions of nanofluid concentration, and heat flux. It is noteworthy that in the present research, the effects of surface roughness change due to nano particles deposition and the impact of passing time on boiling process have been investigated for the first time. Therefore, several experiments have been designed in order to study the change of nanoparticles deposition due to the change of nanofluid concentration and boiling surface heat flux. The results indicate that boiling heat transfer of deposited surfaces at low heat fluxes decreases, while it rises at high heat fluxes.
Keywords:
Pool boiling Ferrofluid Surface roughness Nanoparticles deposition
- 1
.
. .
] - 1 [ 3 .
)
. ( 100
. ]
[. 4 .
.
] [. 5
) ( 0.1
.
0.381 120
. .
. ]
[. 6
. 4
16
. 0.37
0.45 .
. . ] , 7 [. 8 ) - 0.5 ( 0.7
) - 20
( 25 )
( 0.15 .
) 0.005 (
] [. 9 /
.
) . 400
37.22
( ) 10
47
. (
2 14
. .
. ]
[. 10
) /
47 ( 150
.
48 49 524 )
- 4 ( 16
.
) - 0.32 ( 1.25
. 48 524
% 70
0.5 48
% 45 2
. .
.
. ]
[ 11 . .
-
] [ 12 .
. ]
[ 13 .
/
0.1
. .
.
.
1
AFM
] [. 14 -
1- Atomic Force Microscopy(AFM)
21
1
.
. .
.
0.75 . 1
] [. 3
. .
.
.
. .
. .
( )
- 2 - 2 - 1
] [ 15 .
1
) ( 1 FeCl
2+ 2FeCl
3+ 8NH
3+ 4H
2O Fe
3O
4+ 8NH
4Cl
) II FeCl
2( HCl 4 ) III
FeCl
3( HCl
. 50
0.7 375
1- Merck
.
Fe
3O
4.
. 8
25 .
] 30 [. 15
2
TEM
. 1 . 0.1
25
3
XRD .
2 XRD
) Fe
3O
4(
. XRD
) ) ( 220 ) ( 311 ) ( 222 ) ( 400 ) ( 422 ) ( 511 ( 440
) Fe
3O
4. (
. )
(
Fig. 1 Transmission electron microscopy picture of synthesized Iron Oxide/Water nanofluid
/ 1
Fig. 2 X-Ray Diffraction pattern of synthesized Fe3O4 nanoparticles XRD
2
Fe3O4
2- Transmission Electron Microscopy(TEM) 3- X-Ray Diffraction(XRD)
20 25 30 35 40 45 50 55 60 65 70
In te n si ty ( a .u .)
2 theta (degree)
22 0 31 1 51 1 44 0
25nm
25nm
a
b
Fig. 3 Experimental setup, a) Schematic view, b) Actual image
- 3 -
.
] 30 [ 16 .
0.1 pH
7 8
- 44.1
- 2 - 2
. 3
4
250 55
5
. .
90 300
. PTFE
( )
1PTFE Kd2 Pro
)
( 0.01 W/mK 0.29
. . 45
45 . 100
W/mK . 401
1- Polytetrafluoroethylene
Copper
23
. PTFE
9 50
. 800
5 . .
5 .
PT-100
. . 22.5
3 7
19 ) 30
0.1
( . 120
. 30 .
. 0.1 . 800
9 50
120
. 320
.
: ) SJ210 ( R
a=0.48µm
. 10
.
. 3
150
Fig. 4 Main boiling vessel
4 .
30 60
.
. .
. .
.
10 . 3
( )
PT-100 .
PT-100 . 0.1K
TC4Y
- 2 - 3
.
. ] [ 3 . 6
PT-100 . .
3 (T
3)
200 . 10
( = 0.01 ) .
. PTFE
. PTFE .
.
6
) ( 2
=
Condenser
PTFE
Boiling vessel
Fig. 5 Geometry of copper cylindrical block (mm)
) 5
) ( 2 .
) ( 3
) ( 3
= = ( )
) ( 4
) ( 4
=
- 3
- 3 - 1 7
) ( 5 ]
, 14 [: 17
) ( 5
=
,[ ( ( ))
.] Pr
l v
Pr n
0.013 1
]
[ 18
) - 6 ( 8
) ( 6
= ( ) + ( )
) ( 7
= ( ) + ( ) + ( )
) ( 8
= ( ) + ( )
Fig. 6 Arrangement of the PT-100 type thermometers
6
PT-10025
0.1 . 0.1
4 . 5.8
7 .
.
.
- 3 - 2 8 9 .
0.1 . 43
0.1
0.4 . 0.1 .
] , 3 - 19 [ 22 .
] , 3 , 11 [ 14 .
.
] [. 11
320
- 10 ) 480
( 0.48
. ) SJ210 ( 10
. 1
25
. . 0.1
.
] [ 23 .
] , 3 , 11 [ 14 .
- 3 - 3
Fig. 7 Heat flux versus wall superheat of the deionized water compared with Rohsenow’s correlation
7
.
: ) SJ210 (
11 1
2 0.1 0.5
.
) .
( 0.1
. 0.5
11
.
. ]
[. 24
12 1
4 0.5
. 2
. 1 2
.
0 100 200 300 400 500 600 700 800
4 6 8 10 12 14 16 18
H ea t F lu x ( k W /m
2)
Wall superheat (K)
Rohsenow correlation
1st dionized water
2nd dionized water
3 rd dionized water
Fig. 8 Heat flux versus wall superheat for different volume concentrations of the nanofluid
8
Fig. 9 Boiling heat transfer coefficient versus heat flux for different volume concentrations of the nanofluid
9 .
( )
.
) (
3
. 4 3
. .
1 4
2 1
3 2
0 100 200 300 400 500 600 700 800 900 1000
2 4 6 8 10 12 14 16 18 20
H ea t F lu x ( k W /m
2)
wall Superheat (K)
%
0.01% nanofluid 0.05% nanofluid 0.075% nanofluid 0.1% nanofluid 0.2% nanofluid 0.4% nanofluid
0 10 20 30 40 50 60
0 100 200 300 400 500 600 700 800 900 1000
B o il in g h ea t tr an sf er c o ff ic ie n t (k W /m
2.K )
Heat Flux (kW/m
2)
%
0.01% nanofluid
0.05% nanofluid
0.075% nanofluid
0.1% nanofluid
0.2% nanofluid
0.4% nanofluid
27
) a
b
Fig. 10 a) Profile of surface roughness, b) Image of surface
- 10 -
4
3
2 3
4 . 3
.
13 5
6 1
. 0.5 5 6
. .
0.5
1
Table 1 Nanofluid sedimentation tests with 0.5% volume concentration and average surface roughness before test
0.48 320 1.528 1.824 1.912 0.49 180
0.495 180
1.612 600
1.790 600 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0
0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0
R o u g h n es s (µ m )
distance (mm)
14 7
8 1
. 0.5 7
. .
Fig. 11 Heat flux versus wall superheat for tests 1 and 2 with two different volume concentrations of the nanofluid
1 11 2
Fig. 12 Heat flux versus wall superheat for tests 1 to 4 with 0.5%
volume concentration of the nanofluid
12 1
4 0.5 7
.
8
7
. .
7 8
. 14
7
8 600
.
0 .1
- 4
.
.
Fig. 13 Heat flux versus wall superheat for tests 5 and 6 with 0.5%
volume concentration of the nanofluid
13 5
6
0.5
0 100 200 300 400 500 600 700 800 900 1000
0 2 4 6 8 10 12 14 16 18 20
H ea t F lu x (k W /m
2)
Wall Superheat(K) Test 1-0.5% nanofluid Test 2-0.5% nanofluid Test 1-0.1% nanofluid Test 2-0.1% nanofluid
0 100 200 300 400 500 600 700 800 900 1000
2 4 6 8 10 12 14 16 18 20
H ea t F lu x (k W /m
2)
wall Superheat (K) Test 1-0.5% nanofluid Test 2-0.5% nanofluid Test 3-0.5% nanofluid Test 4-0.5% nanofluid
0 100 200 300 400 500 600 700 800 900
2 4 6 8 10 12 14 16 18 20 22 24
H ea t F lu x ( k W /m
2)
Wall Superheat (K)
Test 1-0.5% nanofluid
Test 5-0.5% nanofluid
Test 6-0.5% nanofluid
29
Fig. 14 Heat flux versus wall superheat for tests 7 and 8 with 0.5%
volume concentration of the nanofluid
7 14 8
0.5
. . 0.1
43
- 5 J/kgK)
(
) ( mm W/m
2K)
(
) ( J/kg W/mK) (
Pr
) W/m
2( ) ( mµ
) ( K
) ( min (%)
U) N/m
2(
) kg/m
3( ) ( N/m
l s sat v
- 6
[1] A. E. Bergles, Enhancement of pool boiling, International journal of refrigeration, Vol. 20, No. 8, pp. 545-551, 1997.
[2] L. Cheng, D. Mewes, A. Luke, Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review, International Journal of Heat and Mass Transfer, Vol. 50, No. 13, pp. 2744-2771, 2007.
[3] M. R. Raveshi, A. Keshavarz, M. S. Mojarrad, S. Amiri, Experimental investigation of pool boiling heat transfer enhancement of alumina–water–
ethylene glycol nanofluids, Experimental Thermal and Fluid Science, Vol.
44, pp. 805-814, 2013.
[4] S. Chol, Enhancing thermal conductivity of fluids with nanoparticles, ASME- Publications-Fed, Vol. 231, pp. 99-106, 1995.
[5] A. Suriyawong, S. Wongwises, Nucleate pool boiling heat transfer characteristics of TiO 2–water nanofluids at very low concentrations, Experimental Thermal and Fluid Science, Vol. 34, No. 8, pp. 992-999, 2010.
[6] S. Kim, I. C. Bang, J. Buongiorno, L. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, Vol. 50, No. 19, pp. 4105-4116, 2007.
[7] S. K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, Vol. 46, No. 5, pp. 851- 862, 2003.
[8] S. K. Das, N. Putra, W. Roetzel, Pool boiling of nano-fluids on horizontal narrow tubes, International Journal of Multiphase Flow, Vol. 29, No. 8, pp.
1237-1247, 2003.
[9] M. Chopkar, A. Das, I. Manna, P. Das, Pool boiling heat transfer characteristics of ZrO 2-water nanofluids from a flat surface in a pool, Heat and Mass Transfer, Vol. 44, No. 8, pp. 999-1004, 2008.
[10] I. C. Bang, S. H. Chang, Boiling heat transfer performance and phenomena of Al 2 O 3–water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer, Vol. 48, No. 12, pp. 2407-2419, 2005.
[11] G. P. Narayan, K. Anoop, S. K. Das, Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes, Journal of Applied Physics, Vol. 102, No. 7, pp. 074317/1-07317/7, 2007.
[12] B. Soleimani, A. Keshavarz Valian, T. Malek Pour, Experimental investigation of velocity and roughness effects on subcooled flow boiling, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 327-334, 2015 (in persian ).
[13] T. Malek Pour, A. Keshavarz Valian, M. Zia Bashar Hagh, B. Soleimani, Experimental investigation of nanofluid concentration and material type effect on pool boiling Modares Mechanical Engineering, Vol. 15, No. 10, pp.
165-172, 2015 (in persian ).
[14] Z. Shahmoradi, N. Etesami, M. N. Esfahany, Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis, International Communications in Heat and Mass Transfer, Vol. 47, pp. 113-120, 2013.
[15] P. Berger, N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, G. C.
Lisensky, Preparation and properties of an aqueous ferrofluid, Journal of Chemical Education, Vol. 76, No. 7, pp. 943-948, 1999.
[16] M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, A. Youssefi, Fabrication, characterization and measurement of thermal conductivity of Fe 3 O 4 nanofluids, Journal of Magnetism and Magnetic Materials, Vol. 322, No. 24, pp. 3895-3901, 2010.
0 100 200 300 400 500 600 700 800 900 1000
2 4 6 8 10 12 14 16 18 20
H ea t F lu x ( k W /m
2)
Wall Superheat (K )
Test 1-0.5% nanofluid
Test 7-0.5%nanofluid
Test 8-0.5% nanofluid
[17] D. Wen, Y. Ding, Experimental investigation into the pool boiling heat
transfer of aqueous based -alumina nanofluids, Journal of Nanoparticle Research, Vol. 7, No. 2-3, pp. 265-274, 2005.
[18] R. J. Moffat, Describing the uncertainties in experimental results, Experimental thermal and fluid science, Vol. 1, No. 1, pp. 3-17, 1988.
[19] S. You, J. Kim, K. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, Vol. 83, No. 16, pp.
3374-3376, 2003.
[20] S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, S. M. You, Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, Vol. 53, No. 5, pp. 972-981, 2010.
[21] M. Kole, T. Dey, Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids, Applied Thermal Engineering, Vol. 37, pp. 112-119, 2012.
[22] M. Kole, T. Dey, Thermophysical and pool boiling characteristics of ZnO- ethylene glycol nanofluids, International Journal of Thermal Sciences, Vol.
62, pp. 61-70, 2012.
[23] Y. I. Rabinovich, J. J. Adler, A. Ata, R. K. Singh, B. M. Moudgil, Adhesion between nanoscale rough surfaces: I. Role of asperity geometry, Journal of Colloid and Interface Science, Vol. 232, No. 1, pp. 10-16, 2000.
[24] S. Vafaei, T. Borca-Tasciuc, Role of nanoparticles on nanofluid boiling phenomenon: Nanoparticle deposition, Chemical Engineering Research and Design, Vol. 92, No. 5, pp. 842-856, 2014.