• Tidak ada hasil yang ditemukan

ハ タニサ ョフソZーサ |»

N/A
N/A
Protected

Academic year: 2024

Membagikan "ハ タニサ ョフソZーサ |»"

Copied!
12
0
0

Teks penuh

(1)

mme.modares.ac.ir

:

Please cite this article using:

A. Abdollahi, M. R. Salimpour, N. Etesami, Experimental analysis of pool boiling heat transfer of ferrofluid on surfaces deposited with nanofluid, Modares Mechanical 1

*2

3

- 1

- 2

-3

* 8415683111

[email protected]

: 16 1394

: 24 1394

: 05 1394

.

) – ( .

. . .

0.1

. 43 . .

. .

Experimental analysis of pool boiling heat transfer of ferrofluid on surfaces deposited with nanofluid

Ali Abdollahi

1

, Mohammad Reza Salimpour

1*

, Nasrin Etesami

2

1- Department of Mechanical Engineering, Isfahan University of Technology, Isfahan, Iran 2- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, Iran

* P.O.B. 841568311, Isfahan, Iran, [email protected]

A RTICLE I NFORMATION A BSTRACT

Original Research Paper Received 07 November 2015 Accepted 15 December 2015 Available Online 25 January 2016

Boiling heat transfer is one of the most applicable heat transfer processes within the industry. In this paper, the pool boiling heat transfer of Fe3O4 /water nanofluid (ferrofluid) in atmospheric pressure has been analyzed experimentally. The nanofluid in this study has been synthesized in a single step and retains high stability. The replication and accuracy of the testing machine has been studied for deionized water three times, indicating an appropriate concordance with the literature. Considering different volume concentrations of the nanofluid has revealed that boiling heat transfer in high concentrations decreases with an increase of concentration, while it rises with the increase of concentration in low concentrations. Hence, boiling heat transfer coefficient in 0.1% volume concentration nanofluid has been measured to be the optimum value which increases up to 43%. The roughness of boiling surface was varied with the deposition of nanoparticles in various conditions of nanofluid concentration, and heat flux. It is noteworthy that in the present research, the effects of surface roughness change due to nano particles deposition and the impact of passing time on boiling process have been investigated for the first time. Therefore, several experiments have been designed in order to study the change of nanoparticles deposition due to the change of nanofluid concentration and boiling surface heat flux. The results indicate that boiling heat transfer of deposited surfaces at low heat fluxes decreases, while it rises at high heat fluxes.

Keywords:

Pool boiling Ferrofluid Surface roughness Nanoparticles deposition

- 1

.

(2)

. .

] - 1 [ 3 .

)

. ( 100

. ]

[. 4 .

.

] [. 5

) ( 0.1

.

0.381 120

. .

. ]

[. 6

. 4

16

. 0.37

0.45 .

. . ] , 7 [. 8 ) - 0.5 ( 0.7

) - 20

( 25 )

( 0.15 .

) 0.005 (

] [. 9 /

.

) . 400

37.22

( ) 10

47

. (

2 14

. .

. ]

[. 10

) /

47 ( 150

.

48 49 524 )

- 4 ( 16

.

) - 0.32 ( 1.25

. 48 524

% 70

0.5 48

% 45 2

. .

.

. ]

[ 11 . .

-

] [ 12 .

. ]

[ 13 .

/

0.1

. .

.

.

1

AFM

] [. 14 -

1- Atomic Force Microscopy(AFM)

(3)

21

1

.

. .

.

0.75 . 1

] [. 3

. .

.

.

. .

. .

( )

- 2 - 2 - 1

] [ 15 .

1

) ( 1 FeCl

2

+ 2FeCl

3

+ 8NH

3

+ 4H

2

O Fe

3

O

4

+ 8NH

4

Cl

) II FeCl

2

( HCl 4 ) III

FeCl

3

( HCl

. 50

0.7 375

1- Merck

.

Fe

3

O

4

.

. 8

25 .

] 30 [. 15

2

TEM

. 1 . 0.1

25

3

XRD .

2 XRD

) Fe

3

O

4

(

. XRD

) ) ( 220 ) ( 311 ) ( 222 ) ( 400 ) ( 422 ) ( 511 ( 440

) Fe

3

O

4

. (

. )

(

Fig. 1 Transmission electron microscopy picture of synthesized Iron Oxide/Water nanofluid

/ 1

Fig. 2 X-Ray Diffraction pattern of synthesized Fe3O4 nanoparticles XRD

2

Fe3O4

2- Transmission Electron Microscopy(TEM) 3- X-Ray Diffraction(XRD)

20 25 30 35 40 45 50 55 60 65 70

In te n si ty ( a .u .)

2 theta (degree)

22 0 31 1 51 1 44 0

25nm

25nm

(4)

a

b

Fig. 3 Experimental setup, a) Schematic view, b) Actual image

- 3 -

.

] 30 [ 16 .

0.1 pH

7 8

- 44.1

- 2 - 2

. 3

4

250 55

5

. .

90 300

. PTFE

( )

1

PTFE Kd2 Pro

)

( 0.01 W/mK 0.29

. . 45

45 . 100

W/mK . 401

1- Polytetrafluoroethylene

Copper

(5)

23

. PTFE

9 50

. 800

5 . .

5 .

PT-100

. . 22.5

3 7

19 ) 30

0.1

( . 120

. 30 .

. 0.1 . 800

9 50

120

. 320

.

: ) SJ210 ( R

a

=0.48µm

. 10

.

. 3

150

Fig. 4 Main boiling vessel

4 .

30 60

.

. .

. .

.

10 . 3

( )

PT-100 .

PT-100 . 0.1K

TC4Y

- 2 - 3

.

. ] [ 3 . 6

PT-100 . .

3 (T

3

)

200 . 10

( = 0.01 ) .

. PTFE

. PTFE .

.

6

) ( 2

=

Condenser

PTFE

Boiling vessel

(6)

Fig. 5 Geometry of copper cylindrical block (mm)

) 5

) ( 2 .

) ( 3

) ( 3

= = ( )

) ( 4

) ( 4

=

- 3

- 3 - 1 7

) ( 5 ]

, 14 [: 17

) ( 5

=

,

[ ( ( ))

.

] Pr

l v

Pr n

0.013 1

]

[ 18

) - 6 ( 8

) ( 6

= ( ) + ( )

) ( 7

= ( ) + ( ) + ( )

) ( 8

= ( ) + ( )

Fig. 6 Arrangement of the PT-100 type thermometers

6

PT-100
(7)

25

0.1 . 0.1

4 . 5.8

7 .

.

.

- 3 - 2 8 9 .

0.1 . 43

0.1

0.4 . 0.1 .

] , 3 - 19 [ 22 .

] , 3 , 11 [ 14 .

.

] [. 11

320

- 10 ) 480

( 0.48

. ) SJ210 ( 10

. 1

25

. . 0.1

.

] [ 23 .

] , 3 , 11 [ 14 .

- 3 - 3

Fig. 7 Heat flux versus wall superheat of the deionized water compared with Rohsenow’s correlation

7

.

: ) SJ210 (

11 1

2 0.1 0.5

.

) .

( 0.1

. 0.5

11

.

. ]

[. 24

12 1

4 0.5

. 2

. 1 2

.

0 100 200 300 400 500 600 700 800

4 6 8 10 12 14 16 18

H ea t F lu x ( k W /m

2

)

Wall superheat (K)

Rohsenow correlation

1st dionized water

2nd dionized water

3 rd dionized water

(8)

Fig. 8 Heat flux versus wall superheat for different volume concentrations of the nanofluid

8

Fig. 9 Boiling heat transfer coefficient versus heat flux for different volume concentrations of the nanofluid

9 .

( )

.

) (

3

. 4 3

. .

1 4

2 1

3 2

0 100 200 300 400 500 600 700 800 900 1000

2 4 6 8 10 12 14 16 18 20

H ea t F lu x ( k W /m

2

)

wall Superheat (K)

%

0.01% nanofluid 0.05% nanofluid 0.075% nanofluid 0.1% nanofluid 0.2% nanofluid 0.4% nanofluid

0 10 20 30 40 50 60

0 100 200 300 400 500 600 700 800 900 1000

B o il in g h ea t tr an sf er c o ff ic ie n t (k W /m

2

.K )

Heat Flux (kW/m

2

)

%

0.01% nanofluid

0.05% nanofluid

0.075% nanofluid

0.1% nanofluid

0.2% nanofluid

0.4% nanofluid

(9)

27

) a

b

Fig. 10 a) Profile of surface roughness, b) Image of surface

- 10 -

4

3

2 3

4 . 3

.

13 5

6 1

. 0.5 5 6

. .

0.5

1

Table 1 Nanofluid sedimentation tests with 0.5% volume concentration and average surface roughness before test

0.48 320 1.528 1.824 1.912 0.49 180

0.495 180

1.612 600

1.790 600 -2.0 -1.5 -1.0 -0.5 0.0 0.5 1.0 1.5 2.0

0.0 2.0 4.0 6.0 8.0 10.0 12.0 14.0 16.0

R o u g h n es s (µ m )

distance (mm)

(10)

14 7

8 1

. 0.5 7

. .

Fig. 11 Heat flux versus wall superheat for tests 1 and 2 with two different volume concentrations of the nanofluid

1 11 2

Fig. 12 Heat flux versus wall superheat for tests 1 to 4 with 0.5%

volume concentration of the nanofluid

12 1

4 0.5 7

.

8

7

. .

7 8

. 14

7

8 600

.

0 .1

- 4

.

.

Fig. 13 Heat flux versus wall superheat for tests 5 and 6 with 0.5%

volume concentration of the nanofluid

13 5

6

0.5

0 100 200 300 400 500 600 700 800 900 1000

0 2 4 6 8 10 12 14 16 18 20

H ea t F lu x (k W /m

2

)

Wall Superheat(K) Test 1-0.5% nanofluid Test 2-0.5% nanofluid Test 1-0.1% nanofluid Test 2-0.1% nanofluid

0 100 200 300 400 500 600 700 800 900 1000

2 4 6 8 10 12 14 16 18 20

H ea t F lu x (k W /m

2

)

wall Superheat (K) Test 1-0.5% nanofluid Test 2-0.5% nanofluid Test 3-0.5% nanofluid Test 4-0.5% nanofluid

0 100 200 300 400 500 600 700 800 900

2 4 6 8 10 12 14 16 18 20 22 24

H ea t F lu x ( k W /m

2

)

Wall Superheat (K)

Test 1-0.5% nanofluid

Test 5-0.5% nanofluid

Test 6-0.5% nanofluid

(11)

29

Fig. 14 Heat flux versus wall superheat for tests 7 and 8 with 0.5%

volume concentration of the nanofluid

7 14 8

0.5

. . 0.1

43

- 5 J/kgK)

(

) ( mm W/m

2

K)

(

) ( J/kg W/mK) (

Pr

) W/m

2

( ) ( mµ

) ( K

) ( min (%)

U

) N/m

2

(

) kg/m

3

( ) ( N/m

l s sat v

- 6

[1] A. E. Bergles, Enhancement of pool boiling, International journal of refrigeration, Vol. 20, No. 8, pp. 545-551, 1997.

[2] L. Cheng, D. Mewes, A. Luke, Boiling phenomena with surfactants and polymeric additives: a state-of-the-art review, International Journal of Heat and Mass Transfer, Vol. 50, No. 13, pp. 2744-2771, 2007.

[3] M. R. Raveshi, A. Keshavarz, M. S. Mojarrad, S. Amiri, Experimental investigation of pool boiling heat transfer enhancement of alumina–water–

ethylene glycol nanofluids, Experimental Thermal and Fluid Science, Vol.

44, pp. 805-814, 2013.

[4] S. Chol, Enhancing thermal conductivity of fluids with nanoparticles, ASME- Publications-Fed, Vol. 231, pp. 99-106, 1995.

[5] A. Suriyawong, S. Wongwises, Nucleate pool boiling heat transfer characteristics of TiO 2–water nanofluids at very low concentrations, Experimental Thermal and Fluid Science, Vol. 34, No. 8, pp. 992-999, 2010.

[6] S. Kim, I. C. Bang, J. Buongiorno, L. Hu, Surface wettability change during pool boiling of nanofluids and its effect on critical heat flux, International Journal of Heat and Mass Transfer, Vol. 50, No. 19, pp. 4105-4116, 2007.

[7] S. K. Das, N. Putra, W. Roetzel, Pool boiling characteristics of nano-fluids, International Journal of Heat and Mass Transfer, Vol. 46, No. 5, pp. 851- 862, 2003.

[8] S. K. Das, N. Putra, W. Roetzel, Pool boiling of nano-fluids on horizontal narrow tubes, International Journal of Multiphase Flow, Vol. 29, No. 8, pp.

1237-1247, 2003.

[9] M. Chopkar, A. Das, I. Manna, P. Das, Pool boiling heat transfer characteristics of ZrO 2-water nanofluids from a flat surface in a pool, Heat and Mass Transfer, Vol. 44, No. 8, pp. 999-1004, 2008.

[10] I. C. Bang, S. H. Chang, Boiling heat transfer performance and phenomena of Al 2 O 3–water nano-fluids from a plain surface in a pool, International Journal of Heat and Mass Transfer, Vol. 48, No. 12, pp. 2407-2419, 2005.

[11] G. P. Narayan, K. Anoop, S. K. Das, Mechanism of enhancement/deterioration of boiling heat transfer using stable nanoparticle suspensions over vertical tubes, Journal of Applied Physics, Vol. 102, No. 7, pp. 074317/1-07317/7, 2007.

[12] B. Soleimani, A. Keshavarz Valian, T. Malek Pour, Experimental investigation of velocity and roughness effects on subcooled flow boiling, Modares Mechanical Engineering, Vol. 15, No. 6, pp. 327-334, 2015 (in persian ).

[13] T. Malek Pour, A. Keshavarz Valian, M. Zia Bashar Hagh, B. Soleimani, Experimental investigation of nanofluid concentration and material type effect on pool boiling Modares Mechanical Engineering, Vol. 15, No. 10, pp.

165-172, 2015 (in persian ).

[14] Z. Shahmoradi, N. Etesami, M. N. Esfahany, Pool boiling characteristics of nanofluid on flat plate based on heater surface analysis, International Communications in Heat and Mass Transfer, Vol. 47, pp. 113-120, 2013.

[15] P. Berger, N. B. Adelman, K. J. Beckman, D. J. Campbell, A. B. Ellis, G. C.

Lisensky, Preparation and properties of an aqueous ferrofluid, Journal of Chemical Education, Vol. 76, No. 7, pp. 943-948, 1999.

[16] M. Abareshi, E. K. Goharshadi, S. M. Zebarjad, H. K. Fadafan, A. Youssefi, Fabrication, characterization and measurement of thermal conductivity of Fe 3 O 4 nanofluids, Journal of Magnetism and Magnetic Materials, Vol. 322, No. 24, pp. 3895-3901, 2010.

0 100 200 300 400 500 600 700 800 900 1000

2 4 6 8 10 12 14 16 18 20

H ea t F lu x ( k W /m

2

)

Wall Superheat (K )

Test 1-0.5% nanofluid

Test 7-0.5%nanofluid

Test 8-0.5% nanofluid

(12)

[17] D. Wen, Y. Ding, Experimental investigation into the pool boiling heat

transfer of aqueous based -alumina nanofluids, Journal of Nanoparticle Research, Vol. 7, No. 2-3, pp. 265-274, 2005.

[18] R. J. Moffat, Describing the uncertainties in experimental results, Experimental thermal and fluid science, Vol. 1, No. 1, pp. 3-17, 1988.

[19] S. You, J. Kim, K. Kim, Effect of nanoparticles on critical heat flux of water in pool boiling heat transfer, Applied Physics Letters, Vol. 83, No. 16, pp.

3374-3376, 2003.

[20] S. M. Kwark, R. Kumar, G. Moreno, J. Yoo, S. M. You, Pool boiling characteristics of low concentration nanofluids, International Journal of Heat and Mass Transfer, Vol. 53, No. 5, pp. 972-981, 2010.

[21] M. Kole, T. Dey, Investigations on the pool boiling heat transfer and critical heat flux of ZnO-ethylene glycol nanofluids, Applied Thermal Engineering, Vol. 37, pp. 112-119, 2012.

[22] M. Kole, T. Dey, Thermophysical and pool boiling characteristics of ZnO- ethylene glycol nanofluids, International Journal of Thermal Sciences, Vol.

62, pp. 61-70, 2012.

[23] Y. I. Rabinovich, J. J. Adler, A. Ata, R. K. Singh, B. M. Moudgil, Adhesion between nanoscale rough surfaces: I. Role of asperity geometry, Journal of Colloid and Interface Science, Vol. 232, No. 1, pp. 10-16, 2000.

[24] S. Vafaei, T. Borca-Tasciuc, Role of nanoparticles on nanofluid boiling phenomenon: Nanoparticle deposition, Chemical Engineering Research and Design, Vol. 92, No. 5, pp. 842-856, 2014.

Referensi

Dokumen terkait

Meanwhile, the aim of this research are (1) to observe the influence on the applied different heat flux and volumetric rate to heat transfer performance, (2) to evaluate heat

The rate-based model requires component mass-transfer coefficients, interfacial areas, and heat-transfer coefficients?. What are component-coupling effects in mass-transfer

Kern, D.Q.,1950, Process Heat Transfer, International Student Edition, McGraw Hill Kogakusha,Ltd,. Yang, Jian Feng.2014.”International Journal of Heat and

Methanol adsorption system concerning heat and mass

1989 Heat and Mass Transfer A Practical Approach,. Third

Predicted heat flux, in particular, at the outer zone of reactor vessel with focusing effect of metal layer of corium formed in the inner vessel is beyond the critical heat flux under

Consolidated method to predicting pressure drop and heat transfer coefficient for both subcooled and saturated flow boiling in micro-channel heat sinks, International Journal of Heat

xii List of Figures Items Figure Caption Page Figure 1.1 Heat transfer system 2 Figure 1.2 Nanoparticles 3 Figure 1.3 Nanofluids mechanism 4 Figure 1.4 Different types of